Difference between revisions of "Числено интегриране"

From Ilianko
Line 53: Line 53:
 
===Оценка на грешката===
 
===Оценка на грешката===
 
<math>\vert r_0 \vert \leq \left  | \int_{x_0}^{x_1} R_0\,dx\ \right | \leq M_1 \left | \int_{x_0}^{x_1} (x-x_0)\,dx\ \right | =  
 
<math>\vert r_0 \vert \leq \left  | \int_{x_0}^{x_1} R_0\,dx\ \right | \leq M_1 \left | \int_{x_0}^{x_1} (x-x_0)\,dx\ \right | =  
M_1 \frac{ (x-x_0)^2 }{2!} \bigg|
+
M_1 \frac{ (x-x_0)^2 }{2!} \Bigg|
  
  

Revision as of 08:40, 6 January 2013

В числения анализ, числено интегриране определя група от алгоритми за намиране стойността на определен интеграл. Понятието се използва и при численото решаване на диференциални уравнения.

Идеята на численото интегриране е функцията f(x) да се приближи с подходяща функция φ(x), която по-лесно може да се интегрира. , където:

  • може да се интегрира точно
  • e остатъка (грешката - residual)

Най-често φ(x) е интерполационен полином построен по някакви възли в интервала за .

Числените методи за интегриране се налага да се използват:

  • Когато не съществува примитивна функция за f(x) (интегралът не се изразява с елементарни функции)
  • когато примитивната функция за f(x) е много сложен израз

Ако f(x) е плавно изменяща се функция, която може да се интегрира в малък брой измерения и има определени гранични стойности, съществуват редица методи с различна степен на точност за апроксимиране на интеграла .

Тогава:



Друг подход е следният: Представяме интеграла по следния начин:

(1) .

Пример. Да се пресметне по формулата на десните правоъгълници

Решение. По условие

Решение

Съгласно

x = {2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3}

y = {0.346574, 0.353303, 0.35839, 0.362134, 0.364779, 0.366516,0.367504, 0.367871, 0.367721, 0.367142, 0.366204}.

Аналитично решение

Решение с Матлаб

h = 0.1 % step
m = 0; % temp
for i = 2:0.1:3-0.1
m = log(i)/i + m
end
I = m*h
I =  0.36219

Оценка на грешката


за

Максималната стойност в [2,3] на е при x = 2