|
|
Line 2: |
Line 2: |
| <math></math> | | <math></math> |
| | | |
− | \frac{1}{2} - <math>\frac{1}{2}</math> | + | <math>\frac{1}{2}</math> \frac{1}{2} |
| | | |
− | \frac{1}{1+\frac{1}{1+\frac{1}{2}}} - <math>\frac{1}{1+\frac{1}{1+\frac{1}{2}}}</math> | + | <math>\frac{1}{1+\frac{1}{1+\frac{1}{2}}}</math> - \frac{1}{1+\frac{1}{1+\frac{1}{2}}} |
| | | |
− | \sqrt{2} - <math>\sqrt{2}</math> | + | <math>\sqrt{2}</math> \sqrt{2} |
| | | |
| \sqrt[3]{2} - <math>\sqrt[3]{2}</math> | | \sqrt[3]{2} - <math>\sqrt[3]{2}</math> |
Revision as of 16:44, 8 June 2011
Примерни формули:
\frac{1}{2}
- \frac{1}{1+\frac{1}{1+\frac{1}{2}}}
\sqrt{2}
\sqrt[3]{2} -
x\ge 1 -
x\le 1 -
1\le x\le \pi -
x\neq 0 -
x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1} -
\triangle ABC \approx \triangle A_1B_1C_1 -
\sum_{cyclyc} ab = ab+bc+ca -
\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} -
\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} -
\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[x_{2007}{\frac{1}{\sum_{cyclyc}a^{bc}}}
-
Упътване LaTex