Difference between revisions of "Упътване за LaTeX"

From Ilianko
Line 3: Line 3:
 
Примерни формули:  
 
Примерни формули:  
 
<math></math>
 
<math></math>
 +
  
 
<math>\frac{1}{2}</math>  \frac{1}{2}
 
<math>\frac{1}{2}</math>  \frac{1}{2}
 +
  
 
<math>\frac{1}{1+\frac{1}{1+\frac{1}{2}}}</math> - \frac{1}{1+\frac{1}{1+\frac{1}{2}}}
 
<math>\frac{1}{1+\frac{1}{1+\frac{1}{2}}}</math> - \frac{1}{1+\frac{1}{1+\frac{1}{2}}}
 +
  
 
<math>\sqrt{2}</math> \sqrt{2}
 
<math>\sqrt{2}</math> \sqrt{2}
 +
  
 
\sqrt[3]{2} - <math>\sqrt[3]{2}</math>
 
\sqrt[3]{2} - <math>\sqrt[3]{2}</math>
 +
  
 
x\ge 1 - <math>x\ge 1</math>
 
x\ge 1 - <math>x\ge 1</math>
 +
  
 
x\le 1 - <math>x\le 1</math>
 
x\le 1 - <math>x\le 1</math>
 +
  
 
1\le x\le \pi - <math>1\le x\le \pi</math>
 
1\le x\le \pi - <math>1\le x\le \pi</math>
 +
  
 
x\neq 0 - <math>x\neq 0</math>
 
x\neq 0 - <math>x\neq 0</math>
 +
  
 
x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1} - <math>x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1}</math>
 
x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1} - <math>x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1}</math>
 +
  
 
\triangle ABC \approx \triangle A_1B_1C_1 - <math>\triangle ABC \approx \triangle A_1B_1C_1</math>
 
\triangle ABC \approx \triangle A_1B_1C_1 - <math>\triangle ABC \approx \triangle A_1B_1C_1</math>
 +
  
 
\sum_{cyclyc} ab = ab+bc+ca - <math>\sum_{cyclyc} ab = ab+bc+ca</math>
 
\sum_{cyclyc} ab = ab+bc+ca - <math>\sum_{cyclyc} ab = ab+bc+ca</math>
 +
  
 
\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} - <math>\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\sum_{cyclyc}a^{bc}\frac{c}{ab}</math>
 
\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} - <math>\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\sum_{cyclyc}a^{bc}\frac{c}{ab}</math>
 +
  
 
\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} - <math>\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} </math>
 
\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} - <math>\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} </math>
 +
  
 
\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[x_{2007}{\frac{1}{\sum_{cyclyc}a^{bc}}}  
 
\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[x_{2007}{\frac{1}{\sum_{cyclyc}a^{bc}}}  
- <math>
+
- <math>\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}
\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}
 
 
{\sqrt[{2007}]{ \frac{1}{ \sum_{cyclyc}a^{bc}} }} </math>
 
{\sqrt[{2007}]{ \frac{1}{ \sum_{cyclyc}a^{bc}} }} </math>
  

Revision as of 22:01, 9 December 2012

Сайтът поддържа Latex синтаксис за въвеждане формули, а иначе използването на Latex, като текстообработваща среда е друг въпрос...

Примерни формули:


\frac{1}{2}


- \frac{1}{1+\frac{1}{1+\frac{1}{2}}}


\sqrt{2}


\sqrt[3]{2} -


x\ge 1 -


x\le 1 -


1\le x\le \pi -


x\neq 0 -


x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1} -


\triangle ABC \approx \triangle A_1B_1C_1 -


\sum_{cyclyc} ab = ab+bc+ca -


\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} -


\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} -


\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[x_{2007}{\frac{1}{\sum_{cyclyc}a^{bc}}} -

Връзки:

  1. Упътване LaTex
  2. http://ilianko.com/files/short-math-guide.pdf