Difference between revisions of "Махало"

From Ilianko
Line 81: Line 81:
 
*<math> \ l = 5 * m </math>
 
*<math> \ l = 5 * m </math>
 
*<math> \theta_{0} = 17^{\circ} </math>
 
*<math> \theta_{0} = 17^{\circ} </math>
 +
 +
<code><pre>
 +
l = 5; % m
 +
g = 9.8; % m/s^2
 +
theta_0 = 17; % degree
 +
theta_0r = 17*pi/180
 +
omega = sqrt(g/l);
 +
t = 0:0.1:20;
 +
theta = theta_0r*cos(omega.*t);
 +
plot(t,theta)
 +
xlabel('t'), ylabel('theta');
 +
axis([ 0 20 -0.4 0.4]);
 +
title('Matematichesko mahalo');
 +
</pre></code>
 +
 +
[[Image:mahAn.png]]
  
  

Revision as of 13:29, 2 July 2011

Движение на махало под въздействие на гравитацията

Цел: Създаване на връзки между диференциране и диференциални уравнения.

Постановка: Математическо махало. (Съпротивлението на въздуха се пренебрегва). Да се намери зависимостта на махалото спрямо времето, т.е. функцията на движение на махалато.

Анализ: Във всеки момент махалото се движи с различна скорост и ускорение, зависещи от ъгъла на отклонение на махалото.

Производни, разстояние, скорост и ускорение.

Движението на махалото се извършва по окръжност с радиус равен на дължината на нишката, на която е окачено махалото. От тук, следва че:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = \ell \theta }

За да изразим скоростта ползваме първата производна (изменението на разстоянието за единица време). Изменя се само ъгълът, а дължината на нишката е константа и се запазва:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v = {ds\over dt} = {{d\ell\theta}\over dt}= \ell {d\theta\over dt}}

По да изразим ускорението, използваме втората производна

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = {d^2s\over dt^2} = \ell{d^2\theta\over dt^2} } (1)

Сили действащи на махалото

Под внимание се взема само силата действаща по посока на движението. Допирателната по окръжността на движение (тангенциалната сила ( танго -> допир)). Перпендикулярната сила (нормалната ) се неутрализира.

От II закон на нютон Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = ma\,}

За махалото Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = gm \sin\theta = -ma\, => a = -g\sin\theta\, } (2)

Диференциално уравнение на махало

От (1) и (2) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle => -g\sin\theta = \ell{d^2\theta\over dt^2} <=> \ell{d^2\theta\over dt^2} + g\sin\theta = 0 }

Решаване на диференциалното уравнение

Има два подхода при решаване на диференциални уравнения, аналитичен и числен. При конкретното уравнение са възможни и двата подхода, но аналитичният метод може да се използва за Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta < 20^{\circ}} . В този случай диференциалното уравнение ще се преобразува в линейно от втори ред.

Аналитично решение

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell{d^2\theta\over dt^2} + g\sin\theta = 0 <=> \ell{d^2\theta\over dt^2} + g\theta = 0, \theta < 20^{\circ}}

Полагаме Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ {\theta} = {y} } , от тук Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell{y''} + {g}{y} = 0 } - хомогенно диференциално уравнение от 2-ри ред

Уравнението е от вида Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ ay''+by'+cy = 0} , затова лесно могат да се намерят решения във вида Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ y = c_{1} e^{r_{1} x} + c_2 e^{r_{2} x} } , където за r се решава уравнението Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ ar^{2}+br+c=0} , a именно:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell r^2 + g = 0 }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r = \pm j \sqrt{\frac{g}{l}} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ y(t) = c_{1} e^{-j \sqrt{\frac{g}{l}} t} + c_2 e^{j \sqrt{\frac{g}{l}} t}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ e^{jx} = cos(x) + j sin(x) } от тук =>

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \theta(t) = C_{1}cos(\sqrt{\frac{g}{l}} t) + C_{2}sin(\sqrt{\frac{g}{l}} t) }

За получаване на конкретно решение ще зададем начални условия. Примерно в началното положение Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ t=0 } , махалото е отклонено на Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \theta_{0} } градуса и пуснато свободно, т.е. с нулева начална скорост.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} \theta(0) = \theta_{0} = C_{1}cos(\sqrt{\frac{g}{l}} 0) + C_{2}sin(\sqrt{\frac{g}{l}} 0) \\ \theta(0)' = 0 = -C_{1}\sqrt{\frac{g}{l}}sin(\sqrt{\frac{g}{l}} 0) + C_{2}\sqrt{\frac{g}{l}}cos(\sqrt{\frac{g}{l}} 0) \end{cases} } => Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ C_{1} = \theta_{0} , C_{2} = 0 }

За решение на задача при малки ъгли се получава

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta(t) = \theta_{0} cos(\sqrt{\frac{g}{l}} t) }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{g}{l}} = \sqrt{\frac{m}{s^{2}}*\frac{1}{m}} = \frac{1}{s} = \omega * \frac{rad}{s} } e ъгловата скорост с която ще се движи махалото.

От тук Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \theta(t) = \theta_{0} cos(\omega t) }

Визуализация на решението с матлаб

Имаме следните начални условия:

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ l = 5 * m }
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta_{0} = 17^{\circ} }
l = 5; % m
g = 9.8; % m/s^2
theta_0 = 17; % degree
theta_0r = 17*pi/180
omega = sqrt(g/l);
t = 0:0.1:20;
theta = theta_0r*cos(omega.*t);
plot(t,theta)
xlabel('t'), ylabel('theta');
axis([ 0 20 -0.4 0.4]);
title('Matematichesko mahalo');

MahAn.png