|
|
Line 32: |
Line 32: |
| \frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}} | | \frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}} |
| {\sqrt[{2007}]{ \frac{1}{ \sum_{cyclyc}a^{bc}} }} </math> | | {\sqrt[{2007}]{ \frac{1}{ \sum_{cyclyc}a^{bc}} }} </math> |
| + | |
| + | [http://www.math10.com/forumbg/viewtopic.php?t=3053 Упътване LaTex] |
Revision as of 16:43, 8 June 2011
Примерни формули:
\frac{1}{2} -
\frac{1}{1+\frac{1}{1+\frac{1}{2}}} -
\sqrt{2} -
\sqrt[3]{2} -
x\ge 1 -
x\le 1 -
1\le x\le \pi -
x\neq 0 -
x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1} -
\triangle ABC \approx \triangle A_1B_1C_1 -
\sum_{cyclyc} ab = ab+bc+ca -
\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} -
\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} -
\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[x_{2007}{\frac{1}{\sum_{cyclyc}a^{bc}}}
-
Упътване LaTex