Difference between revisions of "Упътване за LaTeX"

From Ilianko
Line 32: Line 32:
 
\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}
 
\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}
 
{\sqrt[{2007}]{ \frac{1}{ \sum_{cyclyc}a^{bc}} }} </math>
 
{\sqrt[{2007}]{ \frac{1}{ \sum_{cyclyc}a^{bc}} }} </math>
 +
 +
[http://www.math10.com/forumbg/viewtopic.php?t=3053 Упътване LaTex]

Revision as of 16:43, 8 June 2011

Примерни формули:


\frac{1}{2} -

\frac{1}{1+\frac{1}{1+\frac{1}{2}}} -

\sqrt{2} -

\sqrt[3]{2} -

x\ge 1 -

x\le 1 -

1\le x\le \pi -

x\neq 0 -

x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1} -

\triangle ABC \approx \triangle A_1B_1C_1 -

\sum_{cyclyc} ab = ab+bc+ca -

\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} -

\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} -

\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[x_{2007}{\frac{1}{\sum_{cyclyc}a^{bc}}} -

Упътване LaTex