Difference between revisions of "Числено интегриране"
(→Анализ) |
|||
(19 intermediate revisions by the same user not shown) | |||
Line 125: | Line 125: | ||
</math> | </math> | ||
− | ==== | + | <math> |r_1| \leq M_2\frac{h^3}{12} </math> |
+ | |||
+ | ==== Формули ==== | ||
+ | <math> I \approx h \left ( \frac{y_0+y_n}{2} + \sum_{i=1}^{n-1}{y_i} \right ) </math> | ||
+ | |||
+ | <math>| R(x) | \leq n \frac{M_2}{2} \frac{h^3}{12} = M_2\frac{(b-a)}{12}h^2</math> | ||
+ | |||
====Решение==== | ====Решение==== | ||
+ | Пример. Да се пресметне по формулата на десните правоъгълници | ||
+ | <math>\int_2^3 \frac{ln(x)}{x}\,dx , n = 10 </math> | ||
+ | |||
+ | <code><pre> | ||
+ | h = 0.1; | ||
+ | sum = 0; | ||
+ | for i = 2+h:h:3-h | ||
+ | sum = log(i)/i + sum | ||
+ | end | ||
+ | sum = sum + (log(2)/2+log(3)/3)/2 | ||
+ | I = sum*h | ||
+ | I = 0.36317 | ||
+ | </pre></code> | ||
+ | |||
====Грешка==== | ====Грешка==== | ||
====Анализ==== | ====Анализ==== | ||
Line 136: | Line 156: | ||
====Грешка==== | ====Грешка==== | ||
====Анализ==== | ====Анализ==== | ||
+ | |||
+ | [http://ilianko.com/files/Simpson08s.pdf Simpson’s Rule and Newton-Cotes Formulas] | ||
+ | |||
+ | [http://ilianko.com/files/numerical_integration_example.pdf промери] | ||
+ | |||
+ | [http://ilianko.com/files/numerical_integration.pdf теория] | ||
+ | |||
+ | [http://ilianko.com/files/numerical_integration_lecture.pdf лекция] |
Latest revision as of 14:14, 6 January 2013
Contents
В числения анализ, числено интегриране определя група от алгоритми за намиране стойността на определен интеграл. Понятието се използва и при численото решаване на диференциални уравнения.
Идеята на численото интегриране е функцията f(x) да се приближи с подходяща функция φ(x), която по-лесно може да се интегрира. , където:
- може да се интегрира точно
- e остатъка (грешката - residual)
Най-често φ(x) е интерполационен полином построен по някакви възли в интервала за .
Числените методи за интегриране се налага да се използват:
- Когато не съществува примитивна функция за f(x) (интегралът не се изразява с елементарни функции)
- когато примитивната функция за f(x) е много сложен израз
Ако f(x) е плавно изменяща се функция, която може да се интегрира в малък брой измерения и има определени гранични стойности, съществуват редица методи с различна степен на точност за апроксимиране на интеграла .
Представяме интеграла по следния начин:
.
Формули на Нютон-Коутс за числено интегриране
Пример. Да се пресметне по формулата на десните правоъгълници
Решение. По условие
Метод на правоъгълниците
Съгласно
x = {2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3}
y = {0.346574, 0.353303, 0.35839, 0.362134, 0.364779, 0.366516,0.367504, 0.367871, 0.367721, 0.367142, 0.366204}.
Аналитично решение
Решение с Матлаб
h = 0.1 % step
m = 0; % sum
for i = 2:h:3-h
m = log(i)/i + m
end
I = m*h
I = 0.36219
Оценка на грешката
Грешка от интегриране:
Сумарна грешка:
за
Максималната стойност в [2,3] на е при x = 2
Анализ
Разликата от аналитичното решение и численото решение е , което е в рамките на максималната грешка.
Формула на трапеца
Геометрично извеждане
Идеята на геометричното извеждане е да замести площта под кривата y = f(x) за x = a до х = b с площта на трапец ограничена от точките (a, 0), (b, 0), [a, f (a)], и [b, f (b)].
Правилото на трапеца няма как да е точно за големи интервали, но ако разглежданият интервал се раздели на по-малки интервали и се сумират техните стойности ще се получи сравнително точно заместване. Ако функцията f има втора производна то грешката от интегриране намалява с , където h e големината на интеграла.
Аналитично извеждане
грешка на приближението
, където
Интегрираме в интервала
Формули
Решение
Пример. Да се пресметне по формулата на десните правоъгълници
h = 0.1;
sum = 0;
for i = 2+h:h:3-h
sum = log(i)/i + sum
end
sum = sum + (log(2)/2+log(3)/3)/2
I = sum*h
I = 0.36317