Difference between revisions of "Упътване за LaTeX"
From Ilianko
(6 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
<math></math> | <math></math> | ||
− | |||
− | <math>\frac{1}{1+\frac{1}{1+\frac{1}{2}}}< | + | \frac{1}{2} - <math>\frac{1}{2}</math> |
+ | |||
+ | |||
+ | \frac{1}{1+\frac{1}{1+\frac{1}{2}}} - <math>\frac{1}{1+\frac{1}{1+\frac{1}{2}}}</math> | ||
+ | |||
+ | |||
+ | \sqrt{2} - <math>\sqrt{2}</math> | ||
− | |||
\sqrt[3]{2} - <math>\sqrt[3]{2}</math> | \sqrt[3]{2} - <math>\sqrt[3]{2}</math> | ||
+ | |||
x\ge 1 - <math>x\ge 1</math> | x\ge 1 - <math>x\ge 1</math> | ||
+ | |||
x\le 1 - <math>x\le 1</math> | x\le 1 - <math>x\le 1</math> | ||
+ | |||
1\le x\le \pi - <math>1\le x\le \pi</math> | 1\le x\le \pi - <math>1\le x\le \pi</math> | ||
+ | |||
x\neq 0 - <math>x\neq 0</math> | x\neq 0 - <math>x\neq 0</math> | ||
+ | |||
x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1} - <math>x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1}</math> | x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1} - <math>x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1}</math> | ||
+ | |||
\triangle ABC \approx \triangle A_1B_1C_1 - <math>\triangle ABC \approx \triangle A_1B_1C_1</math> | \triangle ABC \approx \triangle A_1B_1C_1 - <math>\triangle ABC \approx \triangle A_1B_1C_1</math> | ||
− | \sum_{cyclyc} ab = ab+bc+ca - <math>\sum_{cyclyc} ab = ab+bc+ca</math> | + | |
+ | \sum_{cyclyc}ab = ab+bc+ca - <math>\sum_{cyclyc}{ab = ab+bc+ca}</math> | ||
+ | |||
\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} - <math>\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\sum_{cyclyc}a^{bc}\frac{c}{ab}</math> | \sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} - <math>\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\sum_{cyclyc}a^{bc}\frac{c}{ab}</math> | ||
+ | |||
\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} - <math>\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} </math> | \sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} - <math>\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} </math> | ||
− | |||
− | |||
− | |||
− | |||
− | Връзки: | + | \frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[x_{2007}{\frac{1}{\sum_{cyclyc}a^{bc}}} - <math>\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[{2007}]{ \frac{1}{ \sum_{cyclyc}a^{bc}} }} </math> |
− | [http://www.math10.com/forumbg/viewtopic.php?t=3053 Упътване LaTex] | + | |
− | http://ilianko.com/files/short-math-guide.pdf | + | ==Връзки:== |
+ | #[http://www.math10.com/forumbg/viewtopic.php?t=3053 Упътване LaTex] | ||
+ | #http://ilianko.com/files/short-math-guide.pdf |
Latest revision as of 22:04, 9 December 2012
Сайтът поддържа Latex синтаксис за въвеждане формули, а иначе използването на Latex, като текстообработваща среда е друг въпрос...
Примерни формули:
\frac{1}{2} -
\frac{1}{1+\frac{1}{1+\frac{1}{2}}} -
\sqrt{2} -
\sqrt[3]{2} -
x\ge 1 -
x\le 1 -
1\le x\le \pi -
x\neq 0 -
x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1} -
\triangle ABC \approx \triangle A_1B_1C_1 -
\sum_{cyclyc}ab = ab+bc+ca -
\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} -
\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} -
\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[x_{2007}{\frac{1}{\sum_{cyclyc}a^{bc}}} -