Difference between revisions of "Упътване за LaTeX"

From Ilianko
Line 2: Line 2:
 
<math></math>
 
<math></math>
  
\frac{1}{2} - <math>\frac{1}{2}</math>
+
<math>\frac{1}{2}</math> \frac{1}{2}
  
\frac{1}{1+\frac{1}{1+\frac{1}{2}}} - <math>\frac{1}{1+\frac{1}{1+\frac{1}{2}}}</math>
+
<math>\frac{1}{1+\frac{1}{1+\frac{1}{2}}}</math> - \frac{1}{1+\frac{1}{1+\frac{1}{2}}}
  
\sqrt{2} - <math>\sqrt{2}</math>
+
<math>\sqrt{2}</math> \sqrt{2}
  
 
\sqrt[3]{2} - <math>\sqrt[3]{2}</math>
 
\sqrt[3]{2} - <math>\sqrt[3]{2}</math>

Revision as of 16:44, 8 June 2011

Примерни формули:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} \frac{1}{2}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{1+\frac{1}{1+\frac{1}{2}}}} - \frac{1}{1+\frac{1}{1+\frac{1}{2}}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{2}} \sqrt{2}

\sqrt[3]{2} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt[3]{2}}

x\ge 1 - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\ge 1}

x\le 1 - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\le 1}

1\le x\le \pi - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\le x\le \pi}

x\neq 0 - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\neq 0}

x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1} -

\triangle ABC \approx \triangle A_1B_1C_1 - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \triangle ABC \approx \triangle A_1B_1C_1}

\sum_{cyclyc} ab = ab+bc+ca - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{cyclyc} ab = ab+bc+ca}

\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\sum_{cyclyc}a^{bc}\frac{c}{ab}}

\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} }

\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[x_{2007}{\frac{1}{\sum_{cyclyc}a^{bc}}} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}} {\sqrt[{2007}]{ \frac{1}{ \sum_{cyclyc}a^{bc}} }} }

Упътване LaTex