Difference between revisions of "Упътване за LaTeX"
From Ilianko
Line 28: | Line 28: | ||
\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} - <math>\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} </math> | \sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} - <math>\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} </math> | ||
− | \frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[x_{2007}]{\frac{1}{\sum_{cyclyc}a^{bc}}} - <math>\frac{\sum_{i=1}^{n}</math> | + | \frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[x_{2007}]{\frac{1}{\sum_{cyclyc}a^{bc}}} - <math>\frac{\sum_{i=1}^{n}}</math> |
Revision as of 16:27, 8 June 2011
Примерни формули:
\frac{1}{2} -
\frac{1}{1+\frac{1}{1+\frac{1}{2}}} -
\sqrt{2} -
\sqrt[3]{2} -
x\ge 1 -
x\le 1 -
1\le x\le \pi -
x\neq 0 -
x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1} -
\triangle ABC \approx \triangle A_1B_1C_1 -
\sum_{cyclyc} ab = ab+bc+ca -
\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} -
\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} -
\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[x_{2007}]{\frac{1}{\sum_{cyclyc}a^{bc}}} - Failed to parse (syntax error): {\displaystyle \frac{\sum_{i=1}^{n}}}